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Abstract: Analysis of networks has emerged in recent years as an important knowledge 
management tool. Specifically, the social network analysis can positively influence customer 

behavior prediction, identification of proper groups of shoppers/clients  or efficiency of viral 

advertising. In particular, mining of graphlets (i.e. small induced subgraphs) has become a prominent 

research topic. Although it originally comes from bioinformatics, it finds considerable applications 

in social networks, as well. In this paper, we focus on the network similarity problem and related 

graphlet-based algorithms and corresponding data management processes, respectively. We describe 

known solutions, draft their possible alternatives and pose several open problems.        
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1 Introduction 

The basis of the network science was grounded by A. L. Barabási and his research team 

approximately 20 years ago. It is a field which primarily deals with a structure and dynamics 

of real-world networks and its research methods are taken over from statistical physics, 

combinatorics, computer science and probability theory. The most remarkable applications of 

the network science were found in electrical engineering, informatics, operations research (e.g. 

transportation), social science, bioinformatics, security and cyberwarfare. Overlapping of the 

network science and knowledge management is growing in significance more and more. As an 

example, one can mention results regarding customer behavior predictability in social networks 

[13], community detection [14, 19],  studying the dynamics of viral marketing [11], etc. Another 

challenging subject is the graphlets mining problem, which originated in bioinformatics [16]. 

Therefore, there is a close relationship among the network science, bioinformatics and the 

knowledge management. Details are discussed in the monograph by I. Jurišica and D. Wigle 

[10]. A typical example represents an analysis of protein-protein interactions.  

In organisms on a subcellular level, major biological processes are provided by biochemical 

or functional interactions among macromolecules, such as proteins. Specifically, many of the 

key biological activities (e.g. metabolism, gene expression, immunity, signaling) are mediated 

through protein interactions [18]. For instance, there are nearly half a million protein 

interactions in a human body but so far, only a part of them has been investigated in detail [18]. 

In order to extract valuable knowledge concerning these processes, a network-based abstraction 

is employed. Corresponding networks are called protein-protein interaction networks, shortly 

PPI networks. Studying them is currently one of the prominent topics in bioinformatics.  

Examination of similarities among PPI networks of the same type or, on the contrary, finding 

anomalies among them is an appealing task, which has found  applications in biomedicine. A 
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famous algorithmic method for this purpose was invented by N. Pržulj [16, 17]. It is based on 

frequency analysis of small patterns (called graphlets) occurring in networks. During 15 years 

of practical usage of Pržulj‘s method, it proved its efficiency, but several weaknesses were 

observed, as well. In this paper, we address two early emerged limitations, which are probably 

the most significant ones. Although there was a lot of effort dedicated to eliminating them, the 

discussion on this theme is still going on.  

• The first limitation comes from the fact that for real-world PPI networks with thousands 

of nodes, algorithmic counting of graphlet frequencies requires high demand on 

computational resources. Fortunately, due to recent highly nontrivial graph-theoretical 

results (see e.g. [7]), graphlets counting algorithms were improved considerably. Known 

software programs are e.g. FANMOD, GraphCrunch, RAGE (surveyed in [7]). Currently, 

the most powerful one seems to be ORCA – the Orbit Counting Algorithm, which was 

developed by T. Hočevar [7]. Although the ORCA performs very well using even low-

cost hardware, research and development of other new methods and software programmes 

is permanently in progress [3].  

• The second limitation regards the statistical methods measuring networks similarity. The 

original idea considered visual comparison of two graphlet frequency distributions (each 

for a different network) but was enriched by the usage of so called relative graphlet 

frequency distance [16]. Unfortunately, it seems that the relative graphlet frequency 

distance is very context-sensitive. Moreover, T. Hočevar said [8]: “So far I haven't seen 

a fixed threshold used for deciding whether two networks are similar or not”. A new 

systematic measure was defined in [17], which is graphlet degree distribution agreement, 

shortly GDD agreement. Such a measure is used frequently and seems to be better suited 

for measuring the networks similarity than the former one. Nevertheless, there exists 

space for further research in this area. 

In this paper, we turn our attention towards the network similarity comparison process using 

the ORCA software. Moreover, in Section 3, we introduce two quantities which are originated 

in statistical divergence theory. They are the total variation distance and the Hellinger distance, 

respectively. These quantities are used as network similarity measures in our experimental 

study (Section 4). In order to conduct experimental simulations, we describe the ORCA-based 

workflow, which is utilized in the dataset processing. In Section 4, we argue why the usage of 

the new measures is reasonable. We discuss their advantages and weaknesses and suggest the 

directions for future research.    

2 PPI Networks and Graphlets in Bioinfomatics 

2.1 Graph Theory 

Roughly speaking, a network is a collection of nodes with connections among them. 

Formally, a graph (i.e. an equivalent notion to the network) is a pair G=(V, E), where the set V 

represents a collection of vertices and the set E comprises edges. In reality, vertices represent 

nodes of a given network and links (or connetions) are modelled by edges. We assume that each 

edge connects exactly two vertices as its endpoints. Moreover, links (edges) are without 

directions and they do not form “self-loops”. Between ech pair of vetices are no multiple edges. 

These assumptions match all types of networks which we are dealing with in this paper. Given 

a graph G=(V, E), a subgraph of G is a graph H=(W, F) such that WV and F E, i.e. both W 
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and F are subsets of V and E, respectively. Induced subgraphs are instances of subgraphs which 

are often used in bioinformatics. Thier definition is as follows. Let G=(V, E) be a graph and let 

WV. An induced subgraph of G with respect to W is the graph whose vertex set is W and 

whose edge set consits of all such edges of E that have both endpoints in W. A connected graph 

is a graph in which all pairs of distinct vertices are connected by a path, i.e. each vertex is 

reachable from another one. An equivalence relation between two graphs is defined via 

isomorphis. Two graphs G1=(V1, E1), G2=(V2, E2) are said to be equivalent if there is a one-to-

one mapping : V1 → V2, called isomorphism, such that for all pairs u, v  V1 it holds {u, v} 

 E1 if and only if {(u), (v)}  E2. An isomorphism of a graph G onto itself (i.e. : G → G) 

is said to be automorphism. Given a graph G, let Aut(G) denote a group of all automorphisms 

: G → G. Let v  V(G) be a vertex, an orbit of v is a set of all images u=(v) for all 

automorphisms   Aut(G). Examples of orbits are described at the end of this subsection. 

Let G = (V,E) be a graph, a graphlet is a connected induced subgraph of G with at most 5 

vetices. Two graphlets are the same if there exists an isomorphism such that it maps one graphlet 

to the other one. (Two different occurrences of the same graphlet are usually referred to as its 

copies.) Graphlets play a seminal role in bioinformatics [10, 16, 17]. There are totally 30 

graphlets with 2, 3, 4 and 5 vertices. Ordering and labeling of graphlets with at most 4 vetices 

is shown in Fig. 1. All graphlets are denoted by g1, g2, ..., g30. Note that e.g. g7 has three different 

orbits (two vertices with degree 2 belong to the same orbit, the central vertex forms another 

single-element orbit and the single vertex with degree 1 represents the third orbit) and all 

vertices of g3 belong to the same 3-element orbit (similarly, g6 has the only one 4-element orbit). 

Moreover, g2, g4, g5 and g8 have equally two orbits. 

 

Fig. 1 All graphlets with at most 4 vertices. 

2.2 Proteomics and Networks 

Proteins are macromolecules of aminoacids which are essential components in all organisms. 

They do not act in isolation but they interact among each other [6]. Protein-protein interactions 

(PPI) are neither static nor stable;; instead, they are dynamic. Some of them are quick but others 

are slow. Clearly, in PPI networks, vertices represent proteins and edges interactions. From a 

general point of view, PPI networks represent a type of biological networks which are 

commonly called interactome networks [9]. Their structure and behavior is very complex, e.g. 

PPI networks of mammals have approximately ten thousand proteins and hundreds of thousands 

interactions. An example of the PPI network Caenorhabditis Elegans is shown in Fig. 2. It 

consists of 2903 proteins and 4631 interactions. 

Detection of protein-protein interactions is also highly nontrivial and it encompasses various 

methods (indirect, in vivo, in vitro, etc.) [6]. PPI networks share some common properties. 

Specifically, empirical evidence that the structure of PPI networks is close to geometric random 

graphs was published in [16]. To obtain this result, the graphlet-based similarity method was 
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adopted. This and further knowledge concerning structure of PPI networks provides a basis 

which may be essentially helpful in drug design or in related biomedical applications [1, 5, 6].  

     

 

Fig. 2 PPI network of the roundworm Caenorhabditis Elegans (2903 proteins and 4631 interactions) 

drawn by the freeware Gephi [2]. The dataset was downloaded from [15]. 

3 Networks Similarity Measures 

There is a wide variety of approaches to comparing networks or graphs. These approaches 

range from exact and very strict (graph isomorphism) through various kinds of equivalences 

(automorphic, regular, etc.) to statistical comparison methods. The latter ones are based on the 

so-called structural similarity, i.e. an approach in which graphlets occurrence1 in both compared 

networks is evaluated by various statistical measures [16, 17]. A selection of these measures 

(or quantities) is listed in the following subsections. 

3.1 Relative Graphlet Frequency Distance 

Let G=(V, E) be a graph. For i=1,…, 30, let Ni(G) denote the number of graphlets gi in a 

graph G. Let T(G) denote the total number of graphlets in G, i.e. 

𝑇(𝐺) = ∑ 𝑁𝑖(𝐺) 

30

𝑖=1

 

 

(1) 

and let the negative logarithmic relative frequency of a graphlet gi be as follows 

                                            

 
1 Or alternatively, subgraphs occurrence 
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𝐹𝑖(𝐺) = − log (
𝑁𝑖(𝐺)

𝑇(𝐺)
) . 

 

(2) 

Given two graphs G and H, the relative graphlet frequency distance (or distance for brevity) is 

defined as follows. 

𝐷(𝐺, 𝐻) = ∑ |𝐹𝑖(𝐺) − 𝐹𝑖(𝐻)|

30

𝑖=1

 . 

 

(3) 

Recall that the graphlet g1 (i.e. a single edge) is a trivial case. Therefore, it occasionally suffices 

to set i=2 in all lower bounds of summations in the above formulas.  

Two major limitations of the relative graphlet frequency distance are as follows.  

1. If Ni(G) is zero then the corresponding value Fi(G) is undefined in equation (2). It causes 

that all undefined values of both Fi(G) and Fi(H) had to be omitted in equation (3). Such 

a fact may influence negatively the accuracy of the relative graphlet frequency distance 

D(G, H). 

2. It is difficult to determine bounds on D(G, H) generally. It follows that for a computed 

value of D(G, H), it is questionable whether graphs in the question are “very similar”, 

“slightly similar” or “not similar”. In other words, there is no widely accepted threshold 

on relative graphlet frequency distance which could be used for deciding whether graphs 

G and H are similar or not. 

The relative graphlet frequency distance was introduced in [16]; however, due to the above 

reasons, other similarity measures were defined in later works of N. Pržulj at al. They are e.g. 

graphlet degree distribution agreement (shortly GDD agreement), graphlet degree vectors and 

signature similarity (see [17] for the details). Due to the space limitations, these quantities are 

not mentioned in this paper. Instead, we suggest two quantities which are described bellow. 

Their origin comes from the theory of statistical divergence.  

3.2 Total Variation Distance 

According to the previous results, the problem of similarity between two networks can be 

formulated, in essence, as a problem of comparison for two statistical distributions. Such a 

problem is usually solvable by the statistical methods, namely by statistical divergence. Only 

the discrete case is useful for our purpose. For two discrete distributions 𝑃 = (𝑝𝑖)𝑖=1
𝑛  and 

𝑄 = (𝑞𝑖)𝑖=1
𝑛 , the statistical divergence is a “cumulative“ quantity which is proportional to the 

sum of distances between all pairs (pi, qi) for i=1, ..., n. In this paper, we use two discrete cases 

of such a quantity: the total variation distance and Hellinger distance. In order to measure the 

graph similarity, both are modified accordingly. 

Let G, H be two graphs. Recall that Ni(G) and Ni(H) are the numbers of graphlets gi in a 

graph G  (or in H, respectively) for i=1, …., 30. Recall also that T(G), i.e. the total number of 

graphlets in G, is expressed by eq. (1) and the same expression holds for T(H) as well. The total 

variation distance of graphs G and H is defined as follows 
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𝛿(𝐺, 𝐻) =
1

2
 ∑  |

𝑁𝑖(𝐺)

𝑇(𝐺)
−

𝑁𝑖(𝐻)

𝑇(𝐻)
|

30

𝑖=1

 . 

 

(4) 

3.3 Hellinger Distance 

Although it is based on the same idea, such a measure is more complex than the previous 

one. All symbols have the same meaning as above. The Hellinger distance of graphs G and H 

is defined as follows: 

𝐻𝐷(𝐺, 𝐻) = [ 
1

2
 ∑(√𝑁𝑖(𝐺)/𝑇(𝐺) − √𝑁𝑖(𝐻)/𝑇(𝐻))

2
30

𝑖=1

]

1/2

. 

 

(1) 

It is easy to see that if two graphs are similar, then the value of HD is close to zero (and 

nonnegative); otherwise it is approaching to one. Therefore, such a measure provides a 

sufficient tool whenever one needs to distinguish “degree of similarity“ between two graphs. 

Moreover, a deeper insight can confirm that both major limitations of the relative graphlet 

frequency distance are eliminated in the Hellinger distance. 

Within the rest of this paper, the relative graphlet frequency distance, the total variation 

distance and Hellinger distance are commonly called as distances. 

4 A Case Study 

In this section, we demonstrate the graphlet-based network comparison method using the 

ORCA software tool [7]. However, the decision regarding the ORCA utilization caused some 

specific problems which had to be solved. Namely, due to the fact that ORCA requires a strict 

format of input data (and additionally, the output  is a large matrix of integers), it was necessary 

to design a new workflow (i.e. the knowledge dicovery process) suitable for our purpose. The 

details are explained below.  

4.1 Workflow and Datasets under Study 

Our workflow is derived from the generally accepted knowledge discovery process 

described in [10], pp. 3-6. It represents the transformation of data to knowledge and it is suitable 

for various domains, including biological knowledge discovery applications, as well. It usually 

involves 5 steps: selection, preprocessing, transformation, data mining and interpretation. Our 

workflow is its modification and consists of the following steps. 

1. Data preprocessing. The input format of files processed by ORCA should satisfy two 

necessary requirements: there are no multiple edge occurrences, and labels of all 

vertices are ordered consecutively, using values from 0 to n-1. To do so, we use two 

short programs (in Matlab and Python, respectively) which were designed in [12]. 

These programs are able to do the transformation of input data as it is desirable.          

2. The graphlet frequency counting using ORCA. This part represents the first step of 

the knowledge discovery process. The ORCA was downloaded from URL: 

http://www.biolab.si/supp/orca/, section “Download”; the user’s manual can be 

found on the same web page and the implementation details were published in [7]. 

For a given graph with n vertices, the output from ORCA is the file which contains 

http://www.biolab.si/supp/orca/
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a matrix of n×73 integers. Its value ai,j is the frequency of ith vertex in the jth orbit, 

where i=0, …, n-1 and j=0, …, 72 (see [7] for details).  

3. Statistical analysis. We used the MS Excel for this purpose. The output file was 

imported to MS Excel (in “csv”-format) and analyzed according to the measures 

described in Sect. 3.    

4. Interpretation. Four different criteria of similarity comparison were used (see Sect. 

3). Such an approach enables to compare their abilities (or weaknesses) and provides 

a basis for new findings, as well.   

The above steps were used to evaluate the similarity of three sample networks which were 

generated artificially. Datasets were downloaded from http://www.biolab.si/supp/orca/, section 

“Download”. They represent three different networks, whose elementary properties are listed 

in Tab. 1. The last column of the table (The Model) refers to the graph model which was used 

to generate the corresponding network. Visual representation of the networks was drawn by the 

freeware Gephi [2], see Fig. 3. 

Tab. 1 Properties of 3 sample networks. 

Denotation Number of vertices Number of edges The Model 

ba_1k_2k.in 1000 1996 Barabási-Albert 

ba_1k_4k.in 1000 3984 Barabási-Albert 

geo_1k_4k.in 1000 4000 Geometric random graphs 

 

Fig. 3 The networks ba_1k_2k, ba_1k_4k and geo_1k_4k (from the left to right) drawn by the 

freeware Gephi [2]. 

4.2 Results and Intrepretation 

The similarity of above networks was evaluated by four different ways. The first one is 

based on a visual comparison of graphlet frequencies, three others are based on similarity 

measures introduced in Sec. 3, i.e. distances.  

Recall that each output generated by ORCA comprises of a n×73 matrix (ai,j) with vertex-

orbit frequencies. In order to compute Ni(G), i.e. the number of graphlets gi (for i=1,…, 30) in 

a given graph G, we summed elements of the matrix (ai,j) in its jth column iff the jth orbit 

corresponds to the graphlet gi. Such a sum, divided by the number of occurrences of jth orbit in 

gi, equals to Ni(G). For each nonzero value Ni(G), the negative logarithmic relative frequency 

http://www.biolab.si/supp/orca/
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of a graphlet gi (i.e. Fi(G)) was computed according to equation (2). If Ni(G)=0 then Fi(G) is 

undefined. The frequency graphs of values Fi(G) for all three networks are shown in Fig. 4. The 

values in all cases when Ni(G)=0, are omitted. One can see that frequencies of the pair ba_1k_2k 

and ba_1k_4k are more resembling than of other pairs. 

 

 

Fig. 4 Frequencies of Fi(G) for three networks (ba_1k_2k on the left, ba_1k_4k in the middle and 

geo_1k_4k on the right). Numbers of graphlets (1,..., 30) are in x-axis, values of Fi(G) are in y-axis. 

According to equation (3), the relative graphlet frequency distance D was computed for 

each pair of networks. In corresponding summations, all indices i, for which |Fi(G)-Fi(H)| are 

undefined, are omitted. The computed values of the relative graphlet frequency distance are 

listed in the second column of Tab. 2. The numbers of all defined values which contributed to 

the resulting sum (see eq. (3)) are in parentheses in the same column. Their numbers are: 24, 

24 and 29, respectively. (Undefined values of |Fi(G)-Fi(H)| are not included.) Values of the total 

variation distance δ and the Hellinger distance DH were computed by equations (4) and (5), 

respectively. The number of contributed summands were always 30 in both of these distances. 

The resulting values are listed in the 3rd and the 4th column of Tab. 2, respectively.  

Tab. 2 Values of three similarity measures for all pairs of compared networks. Numbers of summands 

are in parentheses for the relative graphlet frequency distance. (As regards the other two measures, 

the numbers of summands are always 30.)  

Compared networks Relative graphlet freq. 

distance    

D 

Total 

variation 

distance 

δ 

Hellinger 

distance  

HD 

ba_1k_2k   vs.   ba_1k_4k   10.67     (24)   0.1265 0.1211 

ba_1k_2k    vs.   geo_1k_4k   35.69     (24)      0.6777 0.6166 

ba_1k_4k    vs.   geo_1k_4k   45.87     (29)   0.5814 0.5444 

 

The visual comparison of networks’s frequency distributions (Fig. 4) is only an auxiliary 

criterion. More significant knowledge can be obtained by the usage of distances (see Tab. 2). 

In general, if a distance is smaller, then the similarity of compared networks is more expressive 

(and vice versa). As it is shown in Tab. 2, the networks ba_1k_2k, ba_1k_4k  are the most 

similar out of all pairs. On the other hand, the distances of pairs in which the geo_1k_4k is 

occurred are essentially greater. Note that values of both distances δ and HD are the greatest 

for the pair (ba_1k_2k, geo_1k_4k), which does not correspond to the value of the distance D. 
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Therefore, the accurate judgment can not be formulated. It is only possible to say that the 

similarity of all pairs of networks in which geo_1k_4k  occurs is not significant. 

4.3 Discussion 

Despite the small number of samples in our dataset, the obtained results are beneficial. 

Both major weaknesses of the relative graphlet frequency distance have been confirmed in our 

study. These weaknesses, however, do not occur in the total variation distance and the Hellinger 

distance.  

The similarity of the above networks was evaluated in four different ways. Although they 

always lead to a similar conclusion, we suggest to prefer the total variation distance and the 

Hellinger distance, respectively. The total variation distance is, in a sense, a modification of the 

relative graphlet frequency distance but the Hellinger distance represents a more sophisticated 

quantity. The authors believe that due to its suitable properties, the Hellinger distance could 

represent a reference similarity measure. However, such an argument needs to be verified in 

further experimental work.   

5 Conclusions 

The paper is focused on selected aspects of the graphlet-based similarity analysis of 

networks. We address the problem of an appropriate networks similarity measure, which has 

been already discussed in [17]. Our contribution is based on computer simulations. In order to 

conduct them, the ORCA-based workflow was described and used. Comparing three network 

similarity measures leads to the observation that we recommend the Hellinger distance as the 

most suitable one.   

In order to verify our findings, it would be desirable to enlarge samples dataset. However, 

additional experimental studies require an improvement of the ORCA-based workflow. Due to 

this reason, the authors are currently working on a new software which would perform the 

processing of statistical analysis more efficiently. Another future research could be aimed at 

new network similarity measures design.   

Acknowledgment 

The authors are grateful to prof. M. Terek for his valuable comments and suggestions on the 

conference presentation. The work of M. Nehéz is supported by the Slovak Science Grant 

Agency under the grant VEGA 1/0026/16. 

 

 

  



13th IWKM 2018, 18 – 19 October 2018, Bratislava - Trenčín, Slovakia 

 

96 

 

References 

1. ATHANASIOS, A., CHARALAMPOS, V., VASILEIOS, T. and ASHRAF, G.M., 2017. 

Protein-Protein Interaction (PPI) Network: Recent Advances in Drug Discovery. Current 

Drug Metabolism, 18(1), pp. 5-10. 

2. BASTIAN, M., HEYMANN, S. and JACOMY, M., 2009. Gephi: an open source software 

for exploring and manipulating networks. In: ICWSM 2009, 3rd Int. AAAI Conference on 

Weblogs and Social media. 2009. The AAAI Press, pp. 361-362. 

3. CHEN, X. and LUI, J.C.S., 2018. Mining Graphlet Counts in Online Social Networks. 

ACM Transactions on Knowledge Discovery from Data, 12(4), pp. 41:1-41:38. 

4. DANG, J., HEDAYATI, A., HAMPEL, K. and TOKLU, C., 2008. An ontological 

knowledge framework for adaptive medical workflow. Journal of Biomedical Informatics, 

41(5), pp. 829-836.   

5. FENG, Y., WANG, Q. and WANG, T., 2017. Drug Target Protein-Protein Interaction 

Networks: A Systematic Perspective. BioMed Research International, 2017, Article ID 

1289259, pp. 1-13. 

6. GONZALEZ, M.W. and KANN, M.G., 2012. Chapter 4: Protein Interactions and Disease. 

PLOS Computational Biology, 8(12), e1002819, pp. 1-11. 

7. HOČEVAR, T. and DEMŠAR, J., 2014. A combinatorial approach to graphlet counting. 

Bioinformatics, 30(4), pp. 559-565. 

8. HOČEVAR, T., 2018. Personal Communication. [May 10, 2018]. 

9. JORDÁN, F., NGUYEN, T.P. and LIU, W.C., 2012. Studying protein-protein interaction 

networks: a systems view on disease. Briefings in Functional Genomics, 11(6), pp. 497-

504. 

10. JURISICA, I. and WIGLE, D., 2006. Knowledge Discovery in Proteomics. Boca Raton: 

CRC Press, Taylor & Francis Group. 

11. LESKOVEC, J., ADAMIC, L.A. and HUBERMAN, B.A., 2007. The dynamics of viral 

marketing. ACM Transactions on the Web, 1(1), Article No. 5. 

12. KARAFFOVÁ, K., CHOWANIECOVÁ, D., GUBRICKÝ, M. and MALOVEC, T., 2018. 

Methods for Graphlets Enumeration. Semestral project (in Slovak), Faculty of Chemical 

and Food Technology, Slovak University of Technology in Bratislava. 

13. OSTROWSKI, D.A., 2012. Social network analysis for consumer behavior prediction. 

Available at: <http://worldcomp-proceedings.com/proc/p2012/ICA3445.pdf> [Accessed 

August, 10 2018]. 

14. PAN, G., ZHANG, W., WU, Z. and LI. S., 2014. Online Community Detection for Large 

Complex Networks. PLOS ONE, 9(7), e102799. 

15. Protein-protein interaction (PPI) networks and Gene Ontology annotation files. Datasets. 

[online] Available at: <https://www.comp.nus.edu.sg/~whsu/IRAP/datasets.html> 

[Accessed September 5, 2018]. 

16. PRŽULJ, N., CORNEIL, D.G. and JURISICA, I., 2004. Modeling interactome: scale-free 

or geometric? Bioinformatics, 20(18), pp. 3508-3515. 

17. PRŽULJ, N., 2007. Biological Network Comparison Using Graphlet Degree Distribution. 

Bioinformatics, 23(2), pp. 177-183. 

18. SEVIMOGLU, T. and ARGA, K.Y., 2014. The role of protein interaction networks in 

systems biomedicine. Computational and Structural Biotechnology Journal, 11(18), pp. 

22-27. 



13th IWKM 2018, 18 – 19 October 2018, Bratislava - Trenčín, Slovakia 

 

97 

 

19. TANG, L. and LIU, H., 2010. Community Detection and Mining in Social Media. 1st ed. 

Williston: Morgan and Claypool Publishers. 

 

 

 

 

 

Contact data: 

RNDr. Martin Nehéz, PhD. 

Institute of Information Engineering, Automation and Mathematics 

Faculty of Chemical and Food Technology 

Slovak University of Technology in Bratislava 

Radlinského 9, 812 37 Bratislava, Slovak Republic 

martin.nehez@stuba.sk  or  nehez841@gmail.com 

 

Ing. Marek Lelovský 

Department of Languages 

Faculty of Chemical and Food Technology 

Slovak University of Technology in Bratislava 

Radlinského 9, 812 37 Bratislava, Slovak Republic 

marek.lelovsky@stuba.sk   

mailto:martin.nehez@stuba.sk
mailto:nehez841@gmail.com
mailto:marek.lelovsky@stuba.sk

