Innovation and Productivity on Industrial Level

Ing. Andrea Zacharová, MBA azacharova@vsm.sk

Vysoká škola manažmentu v Trenčíne International Workshop on Knowledge Management IWKM'2017

Trenčín 12 - 13. 10. 2017

Innovation and labor productivity

- Innovation
- Labor productivity

Studies and Research

- Empirical studies
- 50s
- 90s total sales
- 2000s value added
- New models, approaches

Goal

Comparison Various industries same impact?

Method

- Granger causality
- causality as a symmetrical relationship
- difficult to decide about the direction of causality between variable x and variable y

 how much of the current variable can be explained by the past values and

 whether lagging the variables by several periods of time improves this explanation.

-whether variable x could be useful in predicting variable y

• Null hypothesis: x does not Granger cause y and y does not Granger cause x

Model

- Eurostat
- 28 European countries
- 13 main industries
- 16 years: 2000-2016
- Innovation
- Investment in R&D as % of GDP
- Investment in R&D as % of industry Value Added
- Productivity
- Industrial Value added per person employed

Results - Investment in R&D as % of GDP

Industry	Inv in R&D as % of GDP causes VA p.p.	Value added p.p. causes Inv in R&D as % of GDP
Construction	yes	yes
Electricity, Gas	yes	yes
Financial	yes	yes
Manufacturing	yes	yes
Mining	yes	yes
Scientific Activities	yes	yes
Transportation	yes	yes

Results - Investment in R&D as % of GDP

Industry	Inv in R&D as % of GDP causes VA p.p.	Value added p.p. causes Inv in R&D as % of GDP
Education	no	yes
ICT	no	yes
Water supply	no	yes
Wholesale <i>,</i> Retail	no	yes

Industry	Inv in R&D as % of GDP causes VA p.p.	Value added p.p. causes Inv in R&D as % of GDP
Accomodation	yes	no

Results – R&D/VA p.p.

Industry	R&D/VA causes VA	VA causes R&D/VA
Construction	yes	yes
Electricity, Gas	yes	yes
Financial	yes	yes
Manufacturing	yes	yes
Mining	yes	yes
Scientific Activities	yes	yes
Transportation	yes	yes

Results – R&D/VA p.p.

Industry	R&D/VA causes VA p.p.	VA p.p. causes R&D/VA
Accommodation	yes	no
Agriculture	yes	no
Industry	R&D/VA causes VA p.p.	VA p.p. causes R&D/VA
Water supply	no	yes
Wholesale, retail	no	yes

Industry	R&D/VA causes VA p.p.	VA p.p. causes R&D/VA
ICT	no	no

Summary

European model – 7 out of 13 industries bidirectional

Discussion

- International comparability of data
- Regulation and policies for taxation of innovation, tax credits
- Better reporting
- More detailed data individual companies

Resources

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. *Econometrica: Journal of the Econometric Society*, 424-438.

GRILLICHES, Zvi. 1979. "Issues in Assessing the Contribution of Research and Development to productivity Growth." In *The Bell Journal of Economics*, Vol.10, No.1 (Spring, 1979). Pp. 92-116.

EUROSTAT. 2017. Online. Available at: http://ec.europa.eu/eurostat/statisticsexplained/index.php/R_%26_D_expenditure

EVIEWS, n.a. Online. Available at: http://www.eviews.com/general/about_us. html

OECD. 2007. Growth: Rationale for an innovation strategy. Luxembourg: Statistical Office of the European Communities, 2007.